
Anja user’s guide
version 2.0

Torbjörn Rathsman

August 30, 2017

This document is also available at https://milasudril.github.io/anja

https://milasudril.github.io/anja

Abstract
Anja is a sampler designed for live sound effect playback. Anja makes it possible
to assign sound effects to the keys of the computer keyboard. Anja also features a
channel mixer with 16 channels making it possible to fade a group of sound effects
together, as well as MIDI capabilities for remote control. The backend of Anja is
JACK, the low-latency audio server.

Acknowledgements
Anja would not have been possible without these people:

• Erik de Castro Lopo—for libsamplerate and libsndfile
• Jason Evans—for the jemalloc library
• Melissa O’Neill—for the PCG32 random number generator
• Paul Davis et.al.—for JACK
• Stefan Buller—for valuable feedback on the user interface
• The GTK+ team—for the UI toolkit

The author, 2017

Contents
Legal information iii

Notations iv

1. Introduction 1
1.1. System requirements . 1
1.2. Anja compared to other software . 2

2. Installing Anja 3
2.1. Installing on a GNU/Linux system 3
2.2. Compiling Anja . 3

3. Using Anja 5
3.1. The status area . 5
3.2. Loading a waveform . 5
3.3. Playing waveforms . 7

3.3.1. Controlling and manipulating engine status 8
3.3.2. Connecting Anja to system playback 8
3.3.3. Activating the keyboard . 9

3.4. Capturing waveforms . 10
3.5. Configuring waveform playback . 10

3.5.1. Source file selection . 10
3.5.2. Waveform description . 11
3.5.3. Waveform color . 11
3.5.4. Playback channel . 12
3.5.5. Playback gain . 12
3.5.6. Playback gain randomization 12
3.5.7. Controlling playback behavior 12
3.5.8. Adjusting playback or loop range 13

3.6. Configuring playback channels . 16
3.7. Multi-channel output . 17
3.8. Using MIDI . 18
3.9. Modifying session properties . 19

A. Port status indicators 21

B. Supported file formats 22

i

Contents

C. Key bindings 23

D. Signal flow 24

E. MIDI message processing 25

F. Command line options 27
F.1. Program information . 27
F.2. Appearance . 27
F.3. Session loading or control . 28

G. Session file format 29

H. Dependencies 30
H.1. Libraries . 30
H.2. Tools . 30
H.3. Packages and resources . 31

I. Commands accepted in scripts 32

J. Source code overview 33
J.1. Component interaction . 33
J.2. The design of the UI component . 33

ii

Legal information
Anja is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

Anja is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/.

iii

https://www.gnu.org/licenses/

Notations
The following table shows examples of notations used within this manual, or within
Anja itself.

Symbol Meaning
i The surrounding box may contain useful tips or shortcuts
! The surrounding box contains information that will save you

trouble
You have done something in an incorrect way. The surrounding
box contains information about how you should fix it.
The desired action failed. The surrounding box contains infor-
mation about what went wrong.

Key A key on the computer keyboard
Button A button in the user interface
Formfield An input field within the user interface

(U+0023) A symbol with its Unicode® codepoint in hexadecimal notation

iv

1. Introduction
Anja is a sample player designed for live sound effect playback. Anja makes it
possible to assign sound effects to the keys typing keys of the computer keyboard.
To make it easier to find sound effects, each sound effect can have a description and
a color, that shows up on Anja’s virtual computer keyboard.

Anja also features a channel mixer with 16 channels. All sound effects are routed
through one of these channels. The channel mixer makes it possible to fade a group
of sound effects together. As with sound effects, each channel has a color and a
description. In addition to color, description and channel gain, each channel also
has an adjustable fade time, that is used to automatically fade the channel.

The backend of Anja is JACK, the low-latency audio server [1]. This makes it pos-
sible to connect Anja to other JACK clients enabling the creation of more complex
signal flows.

The session file format of Anja described in more detail in appendix G is in a
formalized text format, optimized for human readability. The syntax of the session
files has taken inspiration from formats such as Markdown [2] and is very similar
to the syntax used in the “Doom template file” [3]. Therefore, session files can be
easily edited by hand in a text editor, at the cost of somewhat larger session files.

1.1. System requirements
To run Anja, a working installation of JACK is required. Moreover, Anja requires
libsndfile [4], libsamplerate [5] and GTK+ version 3 [6], together with gtksourceview
version 3 [7]. A complete list of dependencies are found in appendix H.

Anja currently only builds on x86-64, and has been tested on a Prescott 2m pro-
cessor (a late Pentium® 4 with long mode and HyperThreading), Core i5 IvyBridge,
and Celeron® N3050. If possible, parts of the code can execute faster if Anja is com-
piled for an AVX capable CPU. By default, two versions of Anja are compiled, one
with AVX enabled, and one without (see section 2.2), and a wrapper script is used
to select the appropriate version for the current machine.

Since Anja completely loads all sound files referenced from a session file, it may
consume some RAM. At 48 kHz, the RAM usage is 11 MiB/min of sound. The
minimum screen resolution for running Anja is 1024 px × 768 px.

For Anja to be fully usable, the mouse should have a wheel. Moreover, it is
preferable to use Anja with a MIDI keyboard with configurable knobs. Otherwise
is good to have a keyboard with a high rollover count i.e. it should be possible to
press many keys simultaneously.

1

1. Introduction

1.2. Anja compared to other software
There are other sample players that also may be used with JACK. One such pro-
gram is Hydrogen [8]. Compared to Hydrogen, Anja lacks a sequencer. However, in
Hydrogen, waveforms need to be assigned in a particular order, and Hydrogen does
not feature an on-screen keyboard.

Other features in Anja is event-triggered auto-fade (see section 3.6), and also an
exposed kill all feature (see section 3.3). It also features reverse playback, and the
possibility to do shorter live recordings to any given slot, which can be played back
immediately (see section 3.4).

2

2. Installing Anja
Before Anja can be used, the program needs to be installed. This chapter goes
through the installation procedure.

2.1. Installing on a GNU/Linux system
On GNU/Linux, the recommended way of installing Anja is to install it from the
software repository. Ubuntu users can use the following PPA:

milasudril/anja

If there is no package available, download the source package [9], and compile it
as according to the instructions in section 2.2.

2.2. Compiling Anja
Before Anja can be compiled, certain programs, and libraries are needed. These
are listed in appendix H. Observe that some of the libraries may be split into a
runtime package, and a development package. In this case you must install both
parts of the library. On Ubuntu, these packages usually have the suffix dev. Anja
has been written using the maike [10] build tool. Therefore, this program has to
be available when Anja is compiled. The makefile distributed with Anja, tries to
detect maike before the compilation starts. If the makefile fails to detect maike, a
package containing maike is downloaded from the author’s GitHub repository by
using wget [11] and jq [12].

i
In addition to the general instructions given here, there
are some additional information regarding build prepa-
ration in the file README.md.

As mentioned above, the Anja source package can be obtained from [9]. Following
this link gives a link to a gzipped tarball. In order to extract that tarball issue the
command

tar -xf anja-src.tar.gz

This will create a directory anja-src, in current directory. Now cd into that
directory and run make:

3

2. Installing Anja

cd anja-src
make

!
Normally, Anja is distributed with pre-rendered images.
It may happen that the corresponding blender [13] file
has been updated and the render. In this case, it will
take a much longer time than normal to compile Anja,
since the images will need to be rerendered.

When running make, files are written to __targets_*, where * represents the
current profile. To satisfy all needs, four binaries are generated: {debug ∪ re-
lease}×{Prescott 2m+ ∪ Core ix}. After the compilation has completed, Anja can
be launched directly by running the command

./anja

This is a shell script that selects the most appropriate binary. To make it easier
to launch Anja, you can move (or copy) the script, and the binaries it refers to
to a place mentioned in the PATH variable. For example, a simple install (without
desktop icon and manpage) could look like

cp ./anja ~/bin/anja
for k in __anja_*; do

mkdir ~/bin/"$k"
cp “$k"/anja ~/bin/"$k"

done

In order to install everything to your home directory, you can run

./install ~

If you have sudo permissions, you can do

sudo make install

This will perform a regular install, for all users. If you are using a Debian based
system, you can also create a deb package, and install that. If prefer this method,
run

make deb #Do not run this command as root
cd ..
sudo dpkg -i anja_${version}-${tag}_${architecture}.deb

The deb target will ask you some questions about dependencies, before it can
continue to compile the Anja package. Notice that if all packages are installed, the
script may give you some hints. Otherwise you will need to look for the correspond-
ing package name using other resources such as searching the Internet, and install
the corresponding package.

4

3. Using Anja
Starting Anja brings up a window that looks like the one presented in fig. 3.1. The
workspace consists of four main parts outlined in fig. 3.2. At the top, there is a status
area, showing the state of Anja. Below that, there are two columns. The leftmost
column contains the action panel with different buttons that affect Anja’s current
state. To the right of that, the keyboard view is located, and below that, there is
a settings panel, controlling which waveforms are loaded as well as the playback of
loaded waveforms.

3.1. The status area
The status area, shown larger in fig. 3.3, contains four parts as illustrated by fig. 3.4.
The engine status and the keyboard status indicators should be self-explanatory:
red means that it is not ready, and green that it is ready. A similar convention
holds for the port status area (see appendix A for more details). In addition to
being in the state of usable or not usable, ports are of different types: MIDI or
Wave, input or output. MIDI ports have red-shaded background, while Wave ports
have a blue-shaded background. Input ports are located to the left, and output ports
are located to the right. Between the input and output sections, there are indicators
with neutral or non-highlighted background. These represent the 16 internal Wave
ports.

The memory usage indicator uses high-saturated colors for memory used by the
current instance of Anja. The amount of memory used by other processes uses low-
saturated colors. The level indicator is divided into two parts: RAM and swap. The
RAM part is green, while the swap part is red.

!
You do not want Anja to spill over into the swap space,
since it can result in long delays between pressing trig-
gering playback, and actual sound output. Also, it can
result in sound dropout from other processes running on
the same JACK server.

3.2. Loading a waveform
To load a waveform, choose a slot by clicking on the corresponding key in the
keyboard view (see fig. 3.2). It is possible to choose any typing key except system

5

3. Using Anja

Figure 3.1: The Anja window, as shown after launching Anja without any command
line arguments, and with a JACK server running.

Action panel

Keyboard view

Settings panel

Status area

Figure 3.2: The different parts of the Anja workspace. At the top, there is a status
area showing the state of Anja. To the left is the action panel, used
to control Anja’s state. To the right is the keyboard view, which selects
waveform slots and channels, and below that is the settings panel, which
is used to load waveforms and control the playback of loaded waveforms.

Figure 3.3: A detailed view of the status area. The status area contains four panels:
An engine status indicator, port status indicators, a keyboard status
indicator, and a memory usage indicator.

6

3.3. Playing waveforms

Port statusEngine stauts Keyboard status Memory usage

Figure 3.4: Layout description of the status area.

keys and the space bar. After choosing a key K , the corresponding key will be
highlighted. Now click Browse… to the right of Source field now visible
in the settings panel (see fig. 3.1). This brings up a file selection dialog. It is also
possible to type a filename directly in the text input field to the left of Browse…
.

If you want to remove the waveform from the slot, without loading a new one,
click on ✗ . If you need the same waveform again, it is possible to load the same
file again, since this action does not remove the original file from disk.

i
In case a multi-channel audio file is loaded, all channels
in the input stream are mixed into one. This is because
Anja uses mono waveforms. If you want to preserve in-
dividual channels, separate the channels of the input file
with a tool such as ffmpeg [14] and load the resulting
files into different slots, mapped to different channels.
Then use multi-channel output (see section 3.7) and trig-
ger playback of these slots simultaneously.

!
Anja does not resample any waveform during playback.
Instead, it will resample waveforms that do not match
the current sample rate when the engine is started. If
the engine has to be restarted and the new sample rate
differs (the only reason for this is that JACK itself was
restarted using another sample rate), it is recommended
to save the current session and reload it rather than
restarting the engine. This is because multiple resample
steps can result in loss of quality.

3.3. Playing waveforms
Before any sound can be heard from Anja, the following conditions has to be met:

• The audio engine has to be running
• The output of Anja has to be connected to a suitable system playback port
• The corresponding playback channel has to be unmuted, and have a non-zero

gain. For more information, see section 3.5.4 and section 3.6.
• The workspace must accept keyboard input (see section 3.3.3), or the MIDI

input port must be connected to a MIDI event source (see section 3.8)

7

3. Using Anja

3.3.1. Controlling and manipulating engine status

As stated in section 3.1, the state of the engine is showed by the leftmost panel in
the status area. If a JACK server was already running when Anja was started, the
engine should be running already. Otherwise, make sure that there is a JACK server
running, and click the button Start engine in the action panel (see fig. 3.2). Now,
there should be a new JACK client with a name that derived from the name of the
current Anja session. For example, after starting the engine on the default session,
there should be a JACK client called New session.anja.

3.3.2. Connecting Anja to system playback

By default, Anja has two output ports: Master out and Audition. The difference
between these ports is what sound that are routed to them. Master out is the main
output, in the sense that all playback triggered by regular key input and MIDI (see
section 3.8) will be routed to this port. The Audition port is used for playback of
the current slot (in section 3.2 the slot mapped to key K), triggered by hitting
Space . To stop all non-audition playback, hit Del . All auditions can be stopped
by hitting Page Down .

i Notice that hitting Space will never output any sound
to Master out. This makes it possible to pre-listen to
sounds without routing them to a PA system.

The connection status of Master out and Audition is shown by the two indicators
with blue-shaded background in the output section of the port status area (see fig. 3.3
and fig. 3.4). When the engine is not running, these are black . When the engine
is running, a non-connected port is indicated by a yellow light, and a connected
port is indicated by a green . For more details about port status indicators, see
appendix A.

A port can be connected to other ports in the system by clicking on the corre-
sponding status indicator. This brings up a dialog box that contains toggle buttons
for all available ports (see fig. 3.5). Click OK to confirm your choiee.

8

3.3. Playing waveforms

Figure 3.5: The port selection dialog. To route the signal to a port, toggle the
corresponding button. The choices are confirmed by clicking OK .

i
JACK ports can be connected by using the command
jack_connect [15]. To connect the mentioned ports to
a pair of system playback ports. the commands would
be

jack_connect 'New session.anja:Master out' \
'system:playback_1'

jack_connect 'New session.anja:Audition' \
'system:playback_2'

Then, Anja will use the “Left” channel as main output,
and the “Right” channel as Audition.

i
Instead of using the command line, it is possible to use a
JACK patchbay tool such as Catia [16]. In Catia ports
can be connected using “Drag and drop”.

3.3.3. Activating the keyboard

Since the keyboard is shared between the playback triggering system and form input
fields, playback can only be triggered from the keyboard when keyboard triggering
is active. The keyboard status indicator (see section 3.1) is red when a form input
field has keyboard focus, and green when playback triggering is active. Keyboard
triggering is activated by hitting Esc , or by clicking anywhere on the workspace
that would not capture keyboard focus.

9

3. Using Anja

3.4. Capturing waveforms
Similar to waveform playback (see section 3.3), waveform capture requires that the
audio engine is started. In order to capture a waveform, make sure that Wave in is
connected to a signal source by clicking on the indicator for Wave in. That is, the
leftmost indicator in the port status area (see section 3.1). Then press Ctrl and
the typing area key K that should be used for playing the captured waveform. If
the Ctrl is released before the typing area key, playback of the recorded waveform
is triggered. If K is released first, the capture process is stopped.

i
Triggering audio capture from the computer keyboard is
only possible when keyboard triggering is active. When
it is active, the keyboard status indicator is green . Oth-
erwise, it is red .

i
It is not possible to record waveforms to a slot that has
been marked as read-only. See section 3.5 form more
information.

!
Captured waveforms are stored the waveform in virtual
memory. This means that it is not possible to record
longer waveforms. Also, trying to do so may crash Anja.
See section 1.1 for information about memory require-
ments.

3.5. Configuring waveform playback
The playback behaviour and other properties can be controlled through the wave-
form tab in the settings panel (see fig. 3.2). An enlarged view of the waveform tab
after loading a waveform file is shown in fig. 3.6. This view is activated by clicking
on the corresponding key on the keyboard view.

3.5.1. Source file selection
The source file is chosen through the Source field. By clicking Browse…
, a file selection dialog appears. When a different waveform file is selected Anja
replaces the waveform associated with current slot, with the waveform loaded from
the chosen file. For information about supported file formats, see appendix B.

i
It is not possible to load another waveform when the
current slot is in use by the engine.

10

3.5. Configuring waveform playback

Figure 3.6: An enlarged view of the settings panel showing the waveform tab, after
loading a waveform file. This tab contains various settings controlling
playback of the selected slot.

i
Changing the source file on disk without clicking on the
reload button ↺ does not affect Anja, since Anja
loads a copy of the file content into memory.

!
Avoid loading large files. Doing so, may exhaust system
memory. See section 1.1 for information about memory
requirements.

3.5.2. Waveform description
It is possible to assign an arbitrary description to the waveform slot through the

Description field. The description does not affect the waveform playback, but
makes it easier to find the waveform in the Keyboard view.

It may happen that the description is long. Therefore it is possible to mark a
key-phrase by surrounding it with square brackets. Then, only the text within the
first pair of square brackets will appear at the virtual key. If there are no square
brackets within the description, the first word will be used instead.

3.5.3. Waveform color
Like description (see section 3.5.2), the Color field is only used for visual
enhancements. The color is given as red-green-blue-alpha values delimited by ;
(U+003B), where each component is in the range [0, 1]. If the … is pressed, a
color selection dialog based on the HSL color system appears.

11

3. Using Anja

i
The idea behind color coding of waveform slots is that
slots that are used in similar context can be encoded
with a similar color. The color coding feature can be
used to categorize different kinds of waveforms such as
Fx and Ambient.

3.5.4. Playback channel
The Channel field assigns a channel to the waveform slot. All sound from this
slot will be routed through the selected channel.

i
Channels can be used to fade multiple sound sources to-
gether. The mix of all channels can either be controlled
by the internal channel mixer (see section 3.6), or by an
external mixer (see section 3.7).

3.5.5. Playback gain
Before the signal reaches the strip for the selected playback channel (see section 3.5.4),
the signal is amplified by the given playback gain. The gain can be adjusted from
−72 dB to 6 dB.

3.5.6. Playback gain randomization
In addition to deterministic playback gain adjustment, it is possible to add a non-
deterministic component to the playback gain. The parameter Gain random
sets how much the random component is amplified.

i Depending on the state of the Set gain on loop flag
(see section 3.5.7), new random numbers are drawn on
manual re-triggering, or for each iteration when playback
loop is active. This can be useful for creating a more
“living” sound.

3.5.7. Controlling playback behavior
There are different options for controlling the playback behavior. These are Loop,
Sustain, Readonly, and Set gain on loop.

12

3.5. Configuring waveform playback

Loop

When Loop is enabled, playback will start form the loop begin cursor when the
playback position reaches the loop end cursor, if no stopping event has occurred
before that happens. For more information about adjusting cursors, see section 3.5.8.

Sustain

The Sustain flag controls whether or not a key release event should also send a stop
event. When the Sustain flag is set, a stop event is not sent, emulating the effect of
a pushed sustain pedal.

Readonly

The Readonly flag controls whether or not it is possible to overwrite a loaded wave-
form with captured audio (see section 3.4). Enabling Readonly prevents that a
loaded waveform is accidentally overwritten by a record command.

Set gain on loop

As mentioned in section 3.5.6, it is possible to only randomize gain on the trig event,
but it is also possible set a new gain for each iteration in a loop. When this flag is
set, the latter happens.

3.5.8. Adjusting playback or loop range
It may happen that only a part of a loaded waveform is interesting for playback
or loop. With the trim panel (see fig. 3.7), it is possible to select the part of the
waveform that should be played or looped. The graph shows in dBFS, the root mean
square signal power integrated over 1 ms, as a function of time in seconds. On top
of the function graph, there are four cursors showing playback and loop range, as
well as the auto-trigger threshold level. In addition to the plot window, there are
four input fields that can be used to set playback cursor positions by entering the
corresponding time position in seconds. The leftmost input field ↦ sets the
begin position. The next input field, ↪ , sets the loop begin position. The
next two input fields, ↩ and ⇥ , controls loop end and end respectively.
Between the begin part and end section is a toggle button that toggles reversed
playback.

i
Notice that when a cursor is located at the same position
as another cursor, it might be obscured by the other
cursor. This is why there are only three cursors visible
in fig. 3.7.

Before going into the details on how to set playback and loop ranges, it is good
to get an overview of the playback sequence illustrated in fig. 3.8. Playback starts

13

3. Using Anja

Figure 3.7: The trim panel. Together with cursor positions, the plot window shows
in dBFS, the root mean square signal power integrated over 1 ms as a
function of time in seconds. Below the plot window there are four input
fields that sets the positions of the playback cursors.

Begin Loop begin Loop endLoop and
not stopped

End

Sample position

Figure 3.8: The playback sequence. Playback starts at the begin cursor and passes
the loop begin cursor. When the playback position reaches the loop end
cursor, and loop is activated and the engine has not received a stop
message, the playback will continue from loop begin when it reaches
loop end. Otherwise, playback continues until end is reached, or a stop
message is received.

14

3.5. Configuring waveform playback

at the begin cursor and passes the loop begin cursor. When the playback position
reaches the loop end cursor, and loop is activated and the engine has not received a
stop message, the playback will continue from loop begin when it reaches loop end.
Otherwise, playback continues until end is reached, or a stop message is received.

!
If the loop begin cursor coincides with loop end cursor,
the loop range becomes empty and there will be no au-
dible loop.

Setting cursor positions

The primary way of setting the position of a cursor is to drag the cursor into position.
The position of the begin is controlled by the green solid cursor and the position of
the loop begin is controlled by the green dashed cursor. The end cursors are drawn
the same way but in red instead of green.

i
If it is hard to position a cursor sufficiently exact, try
pressing Ctrl or Shift while using the mousewheel.
This will zoom in or out in the x or y directions. Drag-
ging inside the plot window, but not near a cursor, will
translate the view window. Right-clicking in the plot
window will reset the view to its initial state.

Another way of adjusting the cursor positions is to drag the auto-triggering cursor
while pressing Shift . This will move the begin and end cursors to the first or last
position where the signal power exceeds the current threshold level. If this requires
that the loop cursors to move, they will be pushed by the non-loop cursors.

i
It is possible to use the auto-trigger threshold to set
both the playback range and the loop range individually
as long as the loop range is set given a higher threshold
level. Since the auto-trigger only moves the begin and
end cursors, but doing so may push the loop cursors
to new positions, it is possible to push the loop cursors
inwards to a certain position. When lowering the auto-
trigger threshold, the loop cursors stays, but the other
cursors move outwards.

i If Shift is not pressed when the auto-triggering cursor
is moved, no automatic adjustment is applied. This way,
the auto-triggering cursor can be used as a guide for
positioning the cursors manually.

A third option is to enter cursors positions into the input fields below the plot
window. The leftmost input field ↦ sets the begin position. The next input

15

3. Using Anja

Figure 3.9: The Channel mixer. Each channel strip has a label, a color, a fade time
knob, and a volume slider. To the right of all strips, there is a master
gain control, that affects the gain of the mix.

field, ↪ , sets the loop begin position. The next two input fields, ↩ and
⇥ , controls loop end and end respectively.

Reversed playback

Reversed playback is toggled by the middle button in the trim panel (see fig. 3.7).
What it does is to swap the direction shown in fig. 3.8 by reversing the list of cursor.
Another way of enabling reversed playback is to manually position the end cursors
before the begin cursors. When begin and end cursors meats, the reverse toggle
button changes state.

3.6. Configuring playback channels
The Channel mixer is shown in fig. 3.9. The Channel mixer controls the playback
volume for the different playback channels. To the right of all channel strips, there
is a master gain control, which controls the playback volume of the mixed channels.
In addition to a gain control, each channel strip also contains an input field for
selecting a channel color, which works similar to the color input field for waveforms
(see section 3.5.3), and a control for determining the duration of automatic fade-
in/out operations.

i
It can be a good idea to match the channel colors in some
way to the colors used for the waveform associated with
the playback channel. This makes it easier to identify
the playback channel for different waveform slots.

16

3.7. Multi-channel output

i
The knob uses an exponential mapping to increase pre-
cision for shorter time values. Also, it uses polar coordi-
nates. If it is hard to find the right value, try to increase
the distance from the cursor to the knob center when
dragging the knob handle. It is also possible to enter
values into the text entry field below the knob.

Automatic fade-in/out is triggered by hitting Fk while pressing ↑ /↓ , where
k is the channel number. After fade-out, the channel is muted until it is unmuted or a
fade-in occures. Mute and unmuting a channel is done by hitting the corresponding
channel key (Fk) while pressing ← or → respectively.

i
It is only possible to access channel 1 to 12 from the
PC keyboard. In order to auto-fade channel 13-16, an
external MIDI controller can be used, see section 3.8.

i
Using the PC keyboard to trigger fade-in/out is only
possible when keyboard input is active. See section 3.3.3
for more information.

When a channel is muted and the engine uses single-channel output, the corre-
sponding indicator in the port status area (see section 3.1), is red . The same is
true when the engine uses multi-channel output (see section 3.7). In the case the
engine uses multi-channel output and the corresponding port is not connected, the
muted state is indicated by a black indicator. Unmuting the channel, reverts the
corresponding indicator to its original state. All possible states of the port status
indicators are listed in appendix A.

3.7. Multi-channel output
Anja has the option to use individual channel output. This enables the use of ex-
ternal effect processors on the different channels. To activate this feature, check the
checkbox Use individual ports for each channel in the session tab (see section 3.9),
and restart the engine by clicking on Start engine in the action panel (see fig. 3.2).
When individual ports are used for different channels, Anja creates one JACK port
for each of the 16 channels in addition to Master out and Audition. These ports
are connected in a similar way as described in section 3.3.2, that is by clicking on
the corresponding status indicator (see section 3.1).

The signal sent to the channel-dedicated output ports are taken after the channel
strip, but before the master gain adjustment. When activating multi-channel out-
put, the port status indicators for the playback channels turns yellow or black
(depending on mute state) since the corresponding ports are not connected to any
input port. However, the signal is still being routed to Master out. For a complete

17

3. Using Anja

overview of the signal flow, see appendix D.

i
With JACK, it is possible to connect multiple output
ports to one input port. In this case, JACK will sum over
all inputs. To reduce the signal level after summation,
other JACK tools such as Non Mixer [17] can be used

3.8. Using MIDI
MIDI is a standard for communications between musical instruments, and other
equipment [18]. Through MIDI, Anja can be controlled by other MIDI enabled
devices or software applications. To make it work, connect the MIDI in port to
any MIDI output port such as midi_capture_1, and Anja will respond to external
MIDI messages. Implementation details of different MIDI messages can be found in
appendix E.

Anja can also be used to control other MIDI enabled devices or software applica-
tions. To let Anja do so, connect MIDI out to a suitable MIDI input port on the
device or software application you want to control. Anja posts the messages gener-
ated by the computer keyboard to MIDI out. The messages generated in different
situations are listed in appendix E.

i
As with wave ports, MIDI ports can be connected by
clicking on the corresponding status indicator (see sec-
tion 3.3.2). See section 3.1 for information about how to
identify ports in the status area.

i
MIDI messages for playing notes are always tagged
with a MIDI channel number. In Anja, the MIDI
channels are the same as the playback channels (see
section 3.5.4 and section 3.6). Thus, there are two
sources for the channel number: the MIDI message it-
self, and the channel number of the slot referred to by
the MIDI message. To resolve this, there is an option

Allow external MIDI sources to set playback channel in
the session tab (see section 3.9).

i
When MIDI out is connected to a MIDI input port, Anja
resets the state of the receiver, and updates its channel
volumes. This means that if the owner of the input port
plays any note, there will be no more audio output from
that device or software application until the next “note
on” message comes.

18

3.9. Modifying session properties

Figure 3.10: The session tab. From this tab, it is possible to give the session a
title and a description, as well as enabling multi-channel output (see
section 3.7).

3.9. Modifying session properties
The session tab, shown in fig. 3.10, contains some session-wide settings. The

Title is used to identify the session in the JACK patchbay. It is also possible
give the session a Description that may contain other relevant information,
such as a longer description, or legal information.

i
The session also has a set of properties that affects cer-
tain behaviour of Anja. For more information, see sec-
tion 3.7 and section 3.8.

i
Both toggling multi-channel output and setting a new
title requires the engine to be restarted.

19

Bibliography
[1] JACK Audio Connection Kit http://jackaudio.org

[2] Daring Firball: Markdown https://daringfireball.net/projects/
markdown

[3] Doom file template http://doom.wikia.com/wiki/Doom_file_template

[4] libsndfile http://www.mega-nerd.com/libsndfile

[5] Secret Rabbit Code (aka libsamplerate) http://www.mega-nerd.com/SRC

[6] The GTK+ Project https://www.gtk.org

[7] Projects/GtkSourceView - GNOME Wiki! https://wiki.gnome.org/
Projects/GtkSourceView

[8] Hydrogen http://www.hydrogen-music.org/hcms

[9] Anja source archive https://github.com/milasudril/anja/releases/
latest

[10] Maike build system https://github.com/milasudril/maike

[11] GNU wget https://www.gnu.org/software/wget/

[12] jq https://stedolan.github.io/jq/

[13] Blender https://www.blender.org

[14] FFmpeg https://www.ffmpeg.org

[15] jack_connect manual page

[16] KxStudio http://kxstudio.linuxaudio.org

[17] Non Mixer | Non http://non.tuxfamily.org/wiki/Non%20Mixer

[18] MIDI Association http://midi.org

20

http://jackaudio.org
https://daringfireball.net/projects/markdown
https://daringfireball.net/projects/markdown
http://doom.wikia.com/wiki/Doom_file_template
http://www.mega-nerd.com/libsndfile
http://www.mega-nerd.com/SRC
https://www.gtk.org
https://wiki.gnome.org/Projects/GtkSourceView
https://wiki.gnome.org/Projects/GtkSourceView
http://www.hydrogen-music.org/hcms
https://github.com/milasudril/anja/releases/latest
https://github.com/milasudril/anja/releases/latest
https://github.com/milasudril/maike
https://www.gnu.org/software/wget/
https://stedolan.github.io/jq/
https://www.blender.org
https://www.ffmpeg.org
http://kxstudio.linuxaudio.org
http://non.tuxfamily.org/wiki/Non%20Mixer
http://midi.org

A. Port status indicators
This table shows all states the port status indicators can have.

Indicator Meaning
Engine is not running
Channel is muted, and not connected to any port
Channel is unmuted and not connected to any port
Channel muted, and connected to some port
Channel unmuted and connected to some port

21

B. Supported file formats
Anja uses libsndfile in order to load waveform files. Thus the file formats sup-
ported by Anja, are the same as those supported by libsndfile. If libsndfile
does not support the file format of a particular waveform file, it can probably be
converted to a supported file format by using ffmpeg. In such case, remember that
you should not transcode to a lossy format (mp3 to ogg is bad), but rather to a
lossless format (mp3 to wav is good).

22

C. Key bindings
These are the key bindins used in Anja. Notice that any of these except Esc
requires that the computer keyboard is active.

Key combination Function
Ctrl + key Record to key
Esc Activate the computer keyboard. Hit this key if other keys

in this list have no effect.
Del Stop all audio playback on Master out or channel ports
key Start playback of the slot associated with key
Page Down Stop all audio playback on Audition
Space Start audition playback of current slot
↑ + Fk Fade in channel k
↓ + Fk Fade out channel k
← + Fk Mute channel k
→ + Fk Unmute channel k

23

D. Signal flow
The following graph illustrates the signal flow of Anja.

Computer
keyboard MIDI out

Playback
controlMIDI in

Audition

Playback
channel ports

Gain
adjustment

Channel
mixer Master out

Master gain

24

E. MIDI message processing
The following table lists all MIDI messages that Anja processes, and how they are
processed.

Message Control code Anja’s response
NOTE_OFF N/A Stop all playback that is

associated with the given
key

NOTE_ON N/A If possible, start playback
using the slot given by the
first data byte. If chan-
nel override is allowed
(see section 3.8), the
mapped waveform will be
played through the chan-
nel given by the mes-
sage. Otherwise, the it is
played through the chan-
nel set by anja (see sec-
tion 3.5.4).

CONTROL_CHANGE CHANNEL_VOLUME Set playback channel vol-
ume. Notice that Anja
assumes that the value
is a linearly mapped dB
value (0 corresponds to
−72 dB, 127 corresponds
to 6 dB), as opposed to
General MIDI, which says
that the value should be
a regular gain. The rea-
son for this implementa-
tion is to make better use
of the seven bits available
in a single channel volume
message.

25

E. MIDI message processing

Message Control code Anja’s response
SOUND_OFF Stop all ongoing play-

back. If The last data
byte is non-zero, it stops
all Audiotion playback.
Otherwise, all other play-
back is stopped.

GENERAL_PURPOSE_1 Start a fade-out on the
given channel. The sec-
ond data byte controls
the decay rate.

GENERAL_PURPOSE_2 Start a fade-in on the
given channel. The sec-
ond data byte controls
the decay rate.

GENERAL_PURPOSE_3 If possible, enable record-
ing to the slot given by
the second data byte. If
recording is already en-
abled, the last block of
the current recording is
discarded.

GENERAL_PURPOSE_4 If possible, disable record-
ing to the slot given by
the second data byte

26

F. Command line options
This is a summary of all command line options. Values inside square brackets are
optional. The different argument types accepted by the different options are

• bool := (true | false | yes | no)
can be true, false, yes, or no. true is equivalent to yes and false is
equivalent to no. It is also possible to use a number. In this case, any non-
zero value is true and zero is false.

• filename in := (A name of an existing file)
If there is no file with the given name, an error occurs.

• filename out := (A valid filename)
If a file with the same name already exists, it will be overwritten.

• theme := (dark | light)
• window mode := (fullscreen | windowed)

F.1. Program information
• --about[=filename out]

prints an about message to filename out. Without argument, the data is
written to standard outout.

• --help[=filename out]
prints all availible command line options to filename out. Without argument,
the data is written to standard outout.

• --version[=filename out]
prints version information to filename out. Without argument, the data is
written to standard outout.

F.2. Appearance
• --theme=theme

selects the UI theme. The default theme is dark. Notice that theme modes
does not work on all GTK+3 themes. In this case, this option has no effect.

• --window-mode=window mode
selects the window mode. The default mode is windowed.

27

F. Command line options

F.3. Session loading or control
• --session=filename in

loads a saved session from filename in. Notice that this option is ignored if
script is given.

• --script[=filename in]
reads and executes commands from filename in. Without argument, the ses-
sion is read from standard input. The command stream works independently
of the UI. Notice that this option overrides the session option.

• --offline=bool
determines whether or not Anja should be started in offline mode. By default,
Anja tries to connect to the JACK server determined by the JACK_DEFAULT_SERVER
environment variable. This option can be used to override that behaviour.

28

G. Session file format
Anja session files are plain text files, that contains all session properties, waveform
settings, and channel settings. Session files do not contain any waveforms. Instead
they refer to the file that contains the actual waveform. The idea is that the ses-
sion file acts as a machine-readable README file, that is somehow bundled with the
waveform files. Thus, the session file should be very easy to read by humans.

For an example of what a session file might look like, see testbank/testbank.txt
in the source repository. The file is organized as a hierarchical key-value store.
Section headers begin with a number of consecutive # (U+0023) , which have to
appear as the first non-whitespace character on a line. The header ends with a
newline character. The section level is the same as the number of characters used to
begin the header. A key begins with a ~ (U+007E) , which similarly to the section
header delimiter, has to be the first non-whitespace character on the line, and ends
with : (U+003A) or a newline character. After the ending delimiter, follows the
associated value. At any point, a \ (U+005C) can be used if a delimiter should be
processed literally.

In general, any character that has no particular meaning in the current context,
can be used without escaping. To make it possible to write session files in a more
readable way, some special rules apply to whitespaces. Whitespaces immediatly fol-
lowing a delimiter or another whitespace, are ignored. As mentioned above, newline
characters cannot appear unescaped in keys. In values, two or more newline charac-
ters that are only separated by other whitespace characters, are collapsed into two
newline characters. Unescaped single newlines are treated in the same way as any
whitespace.

If the first key in a section is Description, it is possible to ommit the key, and
write its value right after the section header. This makes it possible to write session
files more like a regular document.

29

H. Dependencies
This chapter lists all external dependencies, as extracted by maike, used within the
Anja project. The items listed in appendix H.1 are also needed to run Anja. On some
distributions, library packages are split into a runtime package and a development
package. In this case, only the runtime package is needed to run Anja, but the
development package is needed to compile Anja.

H.1. Libraries
The following list contains all libraries except for the C++ runtime library, required
by Anja.

• atk-1.0
• cairo
• cairo-gobject
• gdk-3
• gdk_pixbuf-2.0
• gio-2.0

• glib-2.0
• gobject-2.0
• gtk-3
• gtksourceview-3.0
• jack
• jemalloc

• pango-1.0
• pangocairo-1.0
• pthread
• samplerate
• sndfile

H.2. Tools
The following list contains all tools, required to compile Anja.

• Xvfb
• ar
• awk
• bash
• blender
• cat
• cp
• csplit
• dot

• find
• g++
• grep
• import
• inkscape
• jackd
• maike
• markdown
• octave-cli

• pkg-config
• python3
• rm
• rmdir
• ronn
• sed
• sleep
• sort
• tail

30

H.3. Packages and resources

• tar
• tee
• uniq

• xargs
• xdotool
• xdpyinfo

• xelatex
• xsltproc

H.3. Packages and resources
The following list contains all external resources, required to compile Anja. This
list includes static resources like fonts, and packages for scripting languages.

• linux-libertine • numpy

31

I. Commands accepted in scripts
With the --script option (see appendix F), it is possible to perform some tasks
when starting Anja. This option has been added to make it possible to generate
relevant screenshots for this manual. This means that only features that are needed
for that purpose are currently implemented. Also, the syntax may change in a
future release and it is not very tolerant with respect to whitespace. Nevertheless,
this appendix contains a list of all implemented commands.

• layout inspect
prints coordinates of bounding boxes for various parts of the GUI to standard
output. The outline in fig. 3.2 has been generated by using this command.

• port selector open,port indicator index
opens the port selector dialog (see fig. 3.5) as if the user clicked on the port
status indicator in the status area (see section 3.1), with the given index

• port selector close
closes any open port selector dialog

• waveform load,slot,filename in
Loads filename in into slot, where slot is an integer in [0, 128[

• session load,filename in
Loads the session filename in

• settings,tab
Reveals tab, where tab is one of waveform, channels and session

32

J. Source code overview
The source code of Anja is divided into three major components: Engine, Session
data storage, and UI. The engine is the component that communicates with JACK.
The session data component is responsible for disk I/O of session and waveform files.
The UI code handles the user interface. In addition to these components, there are
in the repository, some more general classes, MIDI interaction helper files, resource
files, test data, and also the source files for this manual. These file categories are
represented by a directory, which contains all of its files.

J.1. Component interaction
The component interaction is illustrated in fig. J.1. It is the engine and the UI that
are the “active” components. When a setting is changed, the UI will modify the
corresponding field in the session data. If that change should affect another part
of the UI, the UI will update the relevant parts itself. When the engine needs a
waveform and its parameter values, it will fetch these from the session data com-
ponent. This direct approach makes the code easier to follow and keeps the session
data component clean, but requires changes at more places in the code, compared
to an orthodox MVC approach, where the model updates all registered views upon
a succeeded change request.

When the user triggers the engine, the UI posts a MIDI message, by calling
Engine::messagePost, to a ringbuffer, which is read by the realtime thread in the
engine. The messages are then processed by the engine. Some actions requires
that the engine updates the UI. This problem is solved by another FIFO with two
post methods: UiContext::messagePost and UiContext::messagePostTry. The
former will block until the message can be processed, while the latter will simply
fail if the message cannot be processed. Thus, from any realtime context, the latter
must be used.

Some requests to the session data component may take a longer time. In this case
it is possible to pass a progress callback object to the affected method. Typically,
the callback object will be some of the UI objects, but there is no explicit association
from the session data component to the UI component.

J.2. The design of the UI component
The UI component has been designed to hide as much as possible about the under-
lying framework, while trying to preserve the native look and feel. This means that

33

J. Source code overview

Callsite Information flow

UI

MIDI
input
queue

Session dataEngine

UI
input
queue

Figure J.1: Component interaction in Anja. The engine and the UI are the active
components, while the session data component acts as a passive data
store.

no widget exposes the internal handle, and most of the common UI widgets, i.e.
buttons, checkboxes, comboboxes, labels, sliders, and text input fields, are nothing
more than thin wrappers on top of the framework. Also, the file selection dialog
belongs to this category. Widgets that have a sematic difference between different
platforms, are emulated using these basic widgets. As an example, listboxes are em-
ulated using a ButtonList, which itself consists of a set of buttons. Some widgets
such as the XYPlot are completely missing from common UI frameworks. In this
case, they have been implemented directly at top of the framework. This is because
it is hard to construct a general abstraction on top of a drawing API.

In addition to widgets, there are “containers”. A container is any class that imple-
ments the Container interface. Since some frameworks, such as the classic Windows
API, is easiest to work with if the container is created before its children, and this
design is more restrictive than creating the widgets before the container, Anja uses
the container-first priciple. Notice that unlike in GTK+-3.0, containers are not wid-
gets. In fact, there is no exposed Widget base class, since the only polymorphic
behaviour required by widgets, positioning, are handled by the framework.

Event handlers are registered by passing a callback object and an id, to the widget
of interest. Different widget has different requirement of the callback object. More
information about this topic can be found in the include file for the widget.

Modal dialog boxes are emulated as modeless dialogues that disables the main
window. The Dialog is a template that owns a widget, and some buttons specified
by a dialog trait. Event handlers for the buttons are handled in a similar way as for
widgets. A callback object is assigned to the dialog, and when the user activates a
button, the corresponding method on the callback object is invoked.

34

	Legal information
	Notations
	Introduction
	System requirements
	Anja compared to other software

	Installing Anja
	Installing on a GNU/Linux system
	Compiling Anja

	Using Anja
	The status area
	Loading a waveform
	Playing waveforms
	Controlling and manipulating engine status
	Connecting Anja to system playback
	Activating the keyboard

	Capturing waveforms
	Configuring waveform playback
	Source file selection
	Waveform description
	Waveform color
	Playback channel
	Playback gain
	Playback gain randomization
	Controlling playback behavior
	Adjusting playback or loop range

	Configuring playback channels
	Multi-channel output
	Using MIDI
	Modifying session properties

	Port status indicators
	Supported file formats
	Key bindings
	Signal flow
	MIDI message processing
	Command line options
	Program information
	Appearance
	Session loading or control

	Session file format
	Dependencies
	Libraries
	Tools
	Packages and resources

	Commands accepted in scripts
	Source code overview
	Component interaction
	The design of the UI component

